COMBINATORICA 9 (4) (1989) 393-395

COMBINATORICA

Akadémiai Kiadó - Springer-Verlag

NOTE

A NOWHERE-ZERO POINT IN LINEAR MAPPINGS

N. ALON and M. TARSI

Received March 29, 1988

We state the following conjecture and prove it for the case where q is a proper prime power: Let A be a nonsingular n by n matrix over the finite field GF_q , $q \ge 4$, then there exists a vector x in $(GF_q)^n$ such that both x and Ax have no zero component.

In this note we consider the following conjecture:

Conjecture 1. Let A be a nonsingular n by n matrix over the finite field GF_q , $q \ge 4$, then there exists a vector x in $(GF_q)^n$ such that both x and Ax have no zero component.

Notice that there are easy examples showing that the assertion of the conjecture is false for $q \leq 3$. We have reached this conjecture while trying to generalize some simple properties of sparse graphs to more general matroids. Specifically: a graph whose edge set is the union of two forests is clearly 4-colorable. In general, the chromatic number of a matroid whose element set is the union of two independent sets can be bigger. This claim can be verified by checking the chromatic polynomial of the uniform matroid $U_{n,2n}$ (see [4] for the relevant definitions). However, if such a matroid is representable over a field GF_q for which conjecture 1 holds then its chromatic number is at most q, since the conjecture implies that its critical number over GF_q is 1 ([4], Chapter 15.5).

The conjecture also seems, to be of interest for its own. The case q=5 was stated as an open problem by F. Jaeger [3]. All we could do so far is to prove the following partial result given in Theorem 1 below. Our proof resembles the ones given in [2], [1], but contains several additional ideas.

Theorem 1. Conjecture 1 holds for the case where q is not a prime, that is $q = p^k$ for a prime p and $k \ge 2$.

Proof. Let $A = \{a_{i,j}\}$ be an *n* by *n* nonsingular matrix over GF_q , where $q = p^k$, $k \ge 2$ and *p* is a prime. Define the polynomial $P_A(X_1, X_2, ..., X_n)$ as follows:

$$P_A(X_1, X_2, ..., X_n) = \prod_{i=1}^n \left(\sum_{j=1}^n a_{i,j} X_j \right).$$

Denote by L the set of all ordered partitions of n into the sum of n non-negative integer parts, that is:

$$L = \big\{ \alpha = (\alpha_1, ..., \alpha_n) \big| \sum_{j=1}^n \alpha_j = n, \alpha_j \text{ is an integer } \ge 0 \big\}.$$

Research supported in part by Allon Fellowship and by a Bat Sheva de Rothschild grant. AMS subject classifications (1980): 05 B 35, 05 B 25, 12 C 05.

Let A_{α} be the *n* by *n* matrix whose columns are α_j copies of the *j*'th column of *A* for every $1 \le j \le n$. E.g., $A_{(1,1,\ldots,1)} = A$ and $A_{(2,0,1,1,\ldots,1)}$ is obtained as the second column of *A* is replaced by a copy of the first one. Also define for every $\alpha = (\alpha_1, \ldots, \alpha_n) \in L c_{\alpha}$ to be the coefficient of $\prod_{j=1}^n X_j^{\alpha_j}$ in the expansion of $P_A(X_1, \ldots, X_n)$. It is a straightforward routine to verify:

Claim 1. For every $\alpha = (\alpha_1, ..., \alpha_n) \in L$

Per
$$(A_{\alpha}) = c_{\alpha} \prod_{j=1}^{n} (\alpha_j !),$$

where Per (A_a) is the permanent of the matrix A_a .

The α_j 's are natural numbers and by α_j ! we mean its value modulo p as an element of GF_p considered as a subfield of GF_q . For a natural number m greater or equal to $p, m! \equiv 0 \pmod{p}$, which yields:

Claim 2. Let $\alpha = (\alpha_1, ..., \alpha_n) \in L$. If for some $j \alpha_i \ge p$ then $Per(A_x) = 0$.

Let A' be the matrix obtained from A by adding the j_1 'th column multiplied by a scalar $s \in GF_q$ to the j_2 'th column, for some $1 \le j_1$, $j_2 \le n$. Clearly Per (A') == Per (A) + s Per $(A_{\alpha=(\alpha_1,\ldots,\alpha_n)})$ where $\alpha_{j_1}=2$, $\alpha_{j_2}=0$ and $\alpha_j=1$ for $j \ne j_1, j_2$. Recursively the permanent of every matrix obtained from A by repeated applications of elementary column operations can be represented as a linear combination $\sum_{\alpha \in L} s_\alpha \operatorname{Per} (A_\alpha)$, where $s_\alpha \in GF_q$. Since A is nonsingular the identity matrix is obtained from A by elementary column operations and hence $1 = \sum_{\alpha \in L} s_\alpha \operatorname{Per} (A_\alpha)$. Applying Claim 2 we obtain:

$$1 = \sum_{\alpha \in L'} s_{\alpha} \operatorname{Per} \left(A_{\alpha} \right)$$

where L' is the subset of L consisting of the partitions $\alpha = (\alpha_1, ..., \alpha_n)$ for which $\alpha_j < p$, $1 \le j \le n$. Therefore, there exists, $\alpha \in L'$ with Per $(A_{\alpha}) \ne 0$. By Claim 1 this implies:

Claim 3. In the expansion of $P_A(X_1, ..., X_n)$ there is a monomial $c_{\alpha} \prod_{j=1}^n X_j^{\alpha_j}$ with $c_{\alpha} \neq 0$ and $\alpha_j < p$ for every j.

Define now

$$P'_{A}(X_{1},...,X_{n}) = \left(\prod_{j=1}^{n} X_{j}\right)P_{A}(X_{1},...,X_{n}).$$

For a vector $x = (x_1, ..., x_n) \in (GF_q)^n$ $P'_A(x) = P'_A(x_1, ..., x_n)$ is the product of all the 2*n* components of both x and Ax. Theorem 1 is thus equivalent to the existence of a vector x for which $P'_A(x) \neq 0$.

It is easy to show (by induction on *n*) that a polynomial in *n* variables over GF_q gives the value 0 for every substitution if and only if it can be reduced to the zero polynomial (i.e., the one with all the coefficients equal to 0) by the relations $X^q = X$ for every variable X. In the expansion of $P'_A(X_1, ..., X_n)$ there is, according to Claim 3, a monomial $c_\alpha \Pi X_j^{\beta_j}$ with $c_\alpha \neq 0$ and all β_j at most p ($\beta_j = \alpha_j + 1$). Since $q = p^k > p$ this monomial cannot be the subject to a reduction by any relation

 $X_j^a = X_j$. On the other hand $P'_A(X_1, ..., X_n)$ is homogeneous and thus a term similar to this monomial cannot be obtained out of another by these relations. It turns out that $P'_A(X_1, ..., X_n)$ cannot be reduced to the zero polynomial and thus there exists a vector x as required.

Remarks

By modifying the above proof we can prove the following extension of Theorem 1, which may help in settling the general case of Conjecture 1.

Proposition 1. Let A be a nonsingular n by n matrix over a field F of characteristic p. Let $F_1, F_2, ..., F_n \subset F$ be arbitrary subsets of F, each of cardinality p, and let $f_1, f_2, ..., f_n$ be elements of F. Then there exists a vector $x = (x_1, x_2, ..., x_n)$ with $x_j \in F_j$ such that the i'th component of Ax is different from f_i .

The proof is almost identical to that of Theorem 1. Only $P'_A(X_1, ..., X_n)$ should be replaced by:

$$\prod_{j=1}^{n} \prod_{f \notin F_j} (X_j - f) \prod_{i=1}^{n} \left(\left(\sum_{j=1}^{n} a_{i,j} X_j \right) - f_i \right)$$

Although this polynomial is not homogeneous, the proof considers only terms of maximal degree and the result follows.

Even stronger restrictions can be forced on the components of x and Ax using the following statement, in which nonsingularity is replaced by permanent $\neq 0$. The (similar) proof is omitted.

Proposition 2. Let A be an n by n matrix over a field F and suppose $Per(A) \neq 0$. Let $F_1, F_2, ..., F_n \subset F$ be arbitrary subsets of F, each of cardinality 2, and let $f_1, f_2, ..., f_n$ be elements of F. Then there exists a vector $x = (x_1, x_2, ..., x_n)$ with $x_i \in F_i$ such that the j'th component of Ax is different from f_j .

Propositions 1 and 2 can be used to show that if $q=p^k$, $k \ge 2$ and A is a nonsingular n by n matrix over GF_q then there are many vectors $x \in (GF_q)^n$ such that both x and Ax have no zero component. For example, for q=4 one can easily show that there are at least $(3/2)^n$ such vectors x. We omit the details.

References

- [1] N. ALON, E. E. BERGMANN, D. COPPERSMITH and A. M. ODLYZKO, Balancing sets of vectors, IEEE Transactions on Information Theory, in press.
- [2] A. E. BROUWER and A. SCHRUVER, The blocking number of an affine space, J. Combinatorial Theory, Ser. A 24 (1978), 251-253.
- [3] F. JAEGER, Problem presented in the 6th Hungar. Comb. Coll., Eger, Hungary 1981, and: Finite and Infinite Sets (eds.: Hajnal, A., Lovász, L., Sós, V. T.). North Holland, Amsterdam, 1982 II, 879.
- [4] D. J. A. WELSH, Matroid Theory, Academic Press, San Francisco, 1976.

Noga Alon and Michael Tarsi

School of Mathematical Sciences Sackler Faculty of Exact Sciences Tel Aviv University Ramat Aviv Tel Aviv 69978 Israel