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We s(ate the following conjecture and prove it for the case where q is a proper prime power: 
Let A be a nonsingular n by n matrix over the finite fieM GF~, q~--4, then there exists a vector 

x in (GFa) ~ such that both x and ~4x have no zero component. 

In this note we consider-the following conjecture: 

Conjecture 1. Let  A be a nonsingular n by n matrix over the finite f ield GFa, q~_4, 
then there exists a vector x in (GF~) n such that both x and A x  have no zero component. 

Notice that there are easy examples showing that the assertion of the con, 
jecture is false for q~_3. We have reached this conjecture while trying to generalize 
some simple properties o f  sparse graphs to more general matroids. Specifically: 
a graph whose edge set is the union of  two forests is clearly 4-colorable. In general, 
the chromatic number of  a matroid whose dement  set is the union of  two in- 
dependent sets can be bigger. This claim can be verified by checking the chromatic 
polynomial of  the uniform matroid Un,2~ (see [4] for the relevant definitions). 
However, i f  such a matroid is representable over a field GFq for which conjecture 
1 holds then its chromatic number is at most q, since the conjecture implies that 
its critical number over GFq is 1 ([4], Chapter !5.5). 

The conjecture also seems, to be of  interest for its own. The case q = 5  was 
stated as an open problem by F. Jaeger [3]. All we could do so far is to prove the  
following partial result given in Theorem 1 below. Our proof  resembles the ones 
given in [2],:[1], but contains several additional ideas.- 

Theorem 1. Conjecture 1 holds for  the case where q is not a prime, that is q = p ~  fo~ 
a prime p and k ~_2. 

Proof. Let A={a~d } be an n by n nonsingular matrix over GF~, where q=p~, 
k->2 and p is a prime. Define the polynomial PA(X1, X~i . . . ,  Xn) as follows: 

n M 

i = 1  = 3 = l -  

Denote by L the set of  all ordered partitions of  n into the sum of  n non-negative 
integer parts, that is: 

L = {~ = (~X, ..., g,)l ~ ~ f =  n , ~  i s  an integer ~_ 0}. 
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Let A~ be the n by n matrix whose columns are % copies of the j 'th column of A 
for every 1 ~_j~_n. E.g., Ao.,  ..... , )=A and A(~,0.,., ..... ,) is obtained as the second 
column of A is replaced by a copy of  the first one. Also define for every 

ct=(~,, .... ~n)~L c~ to be the coefficient of  ]-[ X; j in the expansion of PA(X~ . . . . .  X,). 
. /=l 

It is a straightforward routine to verify: 

Claim 1. For every ~=(0q . . . .  , ~,)s 
I 

Per (A~) = c, 1-/(~ 9, 
,/=1 

where Per (A~) is the permanent of the matrix A~. 

The ~./'s are natural numbers and by 0tfl we mean its value modulo p as an 
element of  GFp considered as a subfield of GF~. For a natural number m greater 
or equal to p, m l - 0  (modp), which yields: 

Claim2. Let ct=(~l,.. . ,0t,)~L, l f  for some j ocj~_p then Per (A~)=0 .  

Let A" be the matrix obtained from A by adding the j , ' th column multiplied by 
a scalar s~GF~ to the A'th column, for some I_~A, A<_-n. Clearly Per (A')= 
=Per(A)+sPer(A~.(~ 1 ..... ~.~) where 0~./~=2, ~j ,=0 and ~ j = l  for J~A,A. 
Recursively the permanent of every matrix obtained from A by repeated applications 
of  elementary column operations can be represented as a linear combination 
Z s~ Per (A~), where s~GF~. Since A is nonsingular the identity matrix is ob- 

~EL 
tained from A by elementary column operations and hence 1 = ~ '  s~ Per (A~). 

Applying Claim 2 we obtain : 
1 = ~'s~Per(A~) 

~E/," 

where L" is the subset of  L consisting of  the partitions ~=(~q, ..., ~,) for which 
~./<p, l~_j~=n. Therefore, there exists, gEL' with Per(A~)~0. By Claim 1 this 
implies �9 

Claim 3. In the expansion of Pa(X1 ..... Xn) there is a monomial c~ [[ X~ ~ with 

c~#O and ~./<p for every j. 

Define now 

r (x, ..... xo = ( .... , x.). 
1=I 

For a vector x----(x, .... , x~)E(GFq) n P~(x)----P~(x, ..... x.) is the product of all 
the 2n components of both x and Ax. Theorem 1 is thus equivalent to the existence 
of a vector x for which P,~ (x) # 0. 

It is easy to show (by induction on n) that a polynomial in n variables over 
GF~ gives the value 0 for every substitution if and only if it can be reduced to the 
zero polynomial (i.e.; the one with all the coeffieients equal to 0) by the relations 
X~=X for every variable X. In the expansion of P~(X1, ..., X,) there is, according 
to Claim 3, a monomial c~,IIX~J with c ~ 0  and all p./at mostp  (p~=~./+l). Since 
q=p~>p this monomial cannot be the subject to a reduction b y  any relation 
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X]=Xj .  On the other hand Pj(X1 . . . .  , X,) is homogeneous and thus a term similar 
to this monomial cannot be obtained out of another by these relations. It turns out 
that P.~(X~ . . . .  , 2 , )  cannot be reduced to the zero polynomial and thus there exists 
a vector x as required. II 

Remarks 

By modifying the above proof we can prove the following extension of 
Theorem 1, which may help in settling the general case of Conjecture 1. 

Proposition 1. Let A be a nonsingular n by n matrix over afield F o f  characteristic p. 
Let 1:1, Fz, .... F, c F  be arbitrarj~ subsets of F, each of  cardinality p, and let f l ,  f2 . . . .  
.... f ,  be elements o f  F. Then there exists a vector x=(Xl, x2, .... x,) with x j~F 1 
such that the i'th component o f  Ax is different from ft .  

The proof is almost identical to that of Theorem 1. Only Pj(Xx, ..., X,) should be 
replaced by: 

a (x , - : )  (( 
J = l f ( F j  i=1 i= l  

Although this polynomial is not homogeneous, the proof considers only terms of 
maximal degree and the result follows. II 

Even stronger restrictions can be forced on the components of x and Ax 
using the following statement, in which nonsingularity is replaced by permanent 
~s0. The (similar) proof is omitted. 

Proposition 2. Let A be an n by n matrix over a field F and suppose Per (A)# 0. 
Let F1, F2, ..., F, c F be arbitrary subsets of  F, each of  cardinality 2, and let f l ,  f2 . . . .  
.... f ,  be elements o f  F. Then there exists a vector x = ( x l ,  x2, . . . ,x , )  with x:F~ 
such that the j ' th component o f  Ax is different from f j .  | 

Propositions 1 and 2 can be used to show that if q=p*, k ~ 2  and A is a 
nonsingular n by n matrix over GFq then there are many vectors x~(GFq)" such that 
both x and Ax have no zero component. For example, for q=4  one can easily 
show that there are at least (3/2)" such vectors x. We omit the details. 
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